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Abstract—Although the volume of stored data doubles every
year, storage capacity costs decline only at a rate of less than
1/5 per year. At the same time, data is stored in multiple
physical locations and remotely retrieved from multiple sites.
Thus, minimizing data storage costs while maintaining data
fidelity and efficient retrieval is still a key challenge in database
systems. In addition to the raw big data, its associated metadata
and indexes equally demand tremendous storage that impacts the
I/O footprint of data centers. In this vision paper, we propose
a new signature-based compression (SIBACO) technique that is
able to: (i) incrementally store big data in an efficient way; and
(ii) improve the retrieval time for data-intensive applications.
SIBACO achieves higher compression ratios by combining and
compressing columns differently based on the type and distribu-
tion of data and can be easily integrated with column and hybrid
stores. We evaluate our proposed tool using real datasets showing
that SIBACO outperforms “monolithic” compression schemes in
terms of storage cost.

Index Terms—signature based, compression, column stores,
hybrid store

I. INTRODUCTION

The ubiquitously available information sources and the
advancements in data acquisition and processing techniques
have led to an unprecedented increase in the data volumes.
This huge amount of data enables smart data analysis, decision
making and solutions, which transform the urban and work
spaces and can be used to improve all aspects of life [1]–[3].

Effectively storing and processing big data workflows, such
as spatiotemporal and telco big data (TBD), unlock a wide
spectrum of smart applications, ranging from churn predic-
tion of subscribers [4], city localization [5], 5G network
optimization/user-experience assessment [1], [6], [7] and road
traffic mapping [7] to name a few. If one considers that just
one-hour Zoom group call requires between 360 MB and 1.2
GB of storage depending on the video quality [8], minimizing
data storage costs and providing efficient retrieval is still a
key challenge in database systems. In addition to the raw
big data, its associated metadata and indexes equally demand
tremendous storage that impacts the I/O footprint of data
centers [9].
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Although the volume of electronically stored data doubles
every year, storage capacity costs decline only at a rate
of less than 1/5 per year [10]. However, the challenge of
storing big data goes beyond the simplistic capacity cost
calculated per GB. In order to have an impact or remain
competitive, organizations and enterprises need to be able to:
(i) store incremental big data in the most efficient manner;
and (ii) improve the retrieval time for data-intensive analytics
and exploration queries [11], [12]. These requirements are
inherently conflicting, as it is well expressed in [13], where
every data access system is described based on its Storage
(read and write operations), Update tasks (i.e., storing data as
they arrive incrementally), and Read tasks (i.e., data query and
exploration).

To this end, optimized column stores were introduced to
address the above requirements. Particularly, C-store was one
of the first column-oriented database management systems,
which uses aggressive compression techniques to reduce the
storage cost [14]. It is very important to choose the cor-
rect encoding/compression scheme for a given data column
to optimize the access to data stored on local or remote
media [15]. Moreover, OLAP systems are using columnar
data representations to exploit compression schemes based on
dictionaries to minimize the storage cost [16]. These systems
can yield high storage cost savings by using compression
techniques that can adapt to the changes of data distribution
alternating between local and global dictionaries [17].

In this vision paper, we present a novel signature-based
compression technique, dubbed SIBACO, which enhances
the current practice and can be easily integrated with col-
umn and hybrid stores to reduce further the storage cost.
SIBACO’s hypothesis is that multi-scheme data compression
is more effective for complex big data by enabling incremental
compression and partial decompression. Multi-scheme data
compression uses different compression schemes that are more
effective to be used for different columns based on their type
and data characteristics. SIBACO breaks the data into groups
of columns/rows and attempts to apply on individual or on a
group of columns/rows the most suitable compression scheme.
SIBACO selects a compression scheme for an individual or
a group of columns by utilizing its knowledge base, which
also maps a signature to a compression scheme, the database
catalog and historical information.



We demonstrate the practicality of our SIBACO technique
by experimenting with real datasets, namely Backblaze1 and
MovieLens2, and analyzing them using data entropy. We show
SIBACO’s potential by comparing its efficiency with a sample
of commonly used compression approaches from the zipfile
library3.

The rest of the paper is organized as follows: Section II
presents the background and related work on the state-of-the-
art compression techniques. Section III presents the overview
of SIBACO and the details of each of its stage. Section IV
presents our first experimental results and Section VI con-
cludes our paper by discussing the next steps of our work.

II. BACKGROUND AND RELATED WORK

As alluded above, SIBACO aims to support data-intensive
applications, many of which need to be able to perform exact
queries over stored data. Therefore we have first explored only
lossless compression techniques.

We can divide the data lossless compression in the following
four categories: (i) Dictionary-based compression, which uses
a dictionary to keep track of the commonly occurring values
in the data and replace them with a shorter code that is
used as an index of the dictionary (e.g., LZ77, LZ78, LZW);
(ii) Statistical compression, which uses statistical models to
represent the probability of occurring values in the data
(e.g., Huffman coding); (iii) Transform-based compression
uses mathematical transformations to represent the data in
a more compact form (e.g., Burrows-Wheeler Transform);
and (iv) Hybrid compression, which uses a combination of
methods from the previous three categories to achieve better
compression ratios (e.g., DEFLATE, which combines LZ77
and Huffman coding, of the first two categories).

The lossless compression schemes used by large enter-
prises are being developed based on the requirements of
their applications. For example, Google’s Snappy4, which
uses byte-oriented operations and bit-stream encoding , and
Facebook’s Zstandard5, which uses dictionary compression
techniques, are suitable for real-time compression. Zstandard
is configurable to allow the user to trade compression speed
for higher compression ratios. Moreover, LZ46 is one of the
fastest compression techniques that uses a byte-oriented LZ77
variant. In our experiments in this paper, we are using the
publicly available compression algorithms provided by the
zipfile library, which includes LZMA, BZIP2, and DEFLATE
representing the compression categories ii, iii, and iv, respec-
tively.

Compression in databases is being researched for more than
three decades now. Due to OLAP over big data, column stores
were introduced to address the huge volume and velocity of

1Backblaze: https://www.backblaze.com/b2/hard-drive-test-data.html
2MovieLens: https://grouplens.org/datasets/movielens/
3zipfile: https://docs.python.org/3/library/zipfile.html
4Snappy: https://google.github.io/snappy/
5Zstandard: https://facebook.github.io/zstd/
6LZ4: https://lz4.github.io/lz4/
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Fig. 1. SIBACO consists of three stages: (i) detection; (ii) partitioning and
grouping; and (iii) selection. As an input, the current version of SIBACO
accepts the uncompressed schema and outputs a set of partitioned column
groups compressed with different compression schemes.

data requirements by integrating compression techniques to re-
duce the storage cost [14], [16], [18]. New compression-based
optimizations emerged to minimize memory accesses that
exploit CPU, RAM, and storage hardware advancements [19],
[20]. Designing a compression-aware database management
system can improve the compression ratio and speedup the
queries further [21]. Moreover, novel solutions are leveraging
machine learning techniques to efficiently transfer and store
petabytes of data [11], [12], [22], [23].

In recent works related to SIBACO, data types and data
organization have been exploited to speed up queries and save
storage space using compression [15], [17], [24]. The use of
partitioning data and separate applying a single compression
technique can yield to higher compression ratios [25]. Oppo-
site to our work, we advocate that use of different compression
schemes can yield even better compression ratios. Even though
our proposed solution falls more under the black-box category,
it share similar ideas with white-box compression in the sense
that it exposes to the applications the compression scheme via
the database metadata [26].

III. OVERVIEW

SIBACO achieves higher compression ratios by combining
and compressing columns differently based on the type and
distribution of the data in the different columns. Its compres-
sion process consists of three stages, as shown in Figure 1: (i)
detection of compatible columns; (ii) partitioning and grouping
of compatible columns; and (iii) then finally selection of data
type-based compression. Subsequently, to retrieve the data
SIBACO is using an ordered index that allows the retrieval of
compressed files using the appropriate compression scheme.

The current version of SIBACO accepts as input a dataset
and the compatible columns (first stage) and carries out the last
two stages. Additionally, we use a naive partitioning/grouping
and selection technique, i.e. entropy, based on empirical data.
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Fig. 2. The entropy of each attribute in the Backblaze dataset (left) and the MovieLens dataset (right).

TABLE I
THE TABLE WITH THE ENTROPY OF EACH ATTRIBUTE FOR THE

MOVIELENS DATASET GENERATED BY THE FIRST STAGE

userId movieId rating timestamp
11.31 8.22 1.99 16.63

A. Detection of compatible columns

In this first stage, the current version of SIBACO uses
Shannon’s source coding theorem [27] to identify if columns
can be compressed yielding a significant reduction of storage.
Shannon’s entropy allows SIBACO to discover redundancy
in the columns in a very efficient way, which enables the
compression algorithms to encode the data using fewer bits.
The output of this stage is a table containing the entropy of
each column to be compression as shown in Table I for the
MovieLens table.

B. Partitioning and grouping of compatible columns/rows.

The second stage partitions and groups the columns and
rows that have similar signatures to achieve high compression
ratios. The current version of this stage groups the columns
with similar entropy from the table generated from the first
stage. Particularly, SIBACO divides the columns into two
groups using the Group function below. The first group con-
sists of the columns {ai, ..., an} that are below the threshold
min(entropy) + θ, where θ is set based on empirical data
(e.g., θ = 0.3). The remaining columns with entropy greater
than min(entropy) + θ form the second group.

Group(ai) =

{
ai ∈ Set 1, if entropy(ai) ≤ min(entropy) + θ

ai ∈ Set 2, otherwise

C. Selection of data type-based compression

The final stage is to select the most appropriate compression
algorithm based on the signature. In this stage, we are exploit-
ing a knowledge base that was built based on a set different
data characteristics (e.g., entropy, data distribution and types).

IV. EXPERIMENTAL EVALUATION

This section provides details regarding the algorithms,
testbed, datasets, and metrics used for the preliminary eval-
uation of our SIBACO technique. In our experimentation,
we chose the following algorithms because they are good
representatives of the compression categories ii-iv and are
readily available from the zipfile library.

Compression Algorithms:

• DEFLATED: uses a combination of LZ77 and Huffman
coding.

• BZIP2: uses a combination of the Burrows-Wheeler
transform and Huffman coding.

• LZMA: uses a combination of dictionary compression
scheme, similar with LZ77, and arithmetic logic

Compared Techniques: Our aim in this experimental evaluation
is to compare the following three techniques:

• BASELINE: This is the baseline (“monolithic”) tech-
nique, which compresses the data being agnostic of the
data characteristics. It compresses all the data with only
a single compression scheme.

• SIBACO-BASIC: This is the basic approach of our pro-
posed technique that uses a single compression scheme.

• SIBACO: This is our proposed technique that uses mul-
tiple compression schemes.

Datasets:

• Backblaze: This dataset is a subset of the publicly
available hard drive metrics released by Backblaze. In
our experiments we have only included data for the year
2022 (Q1-Q3). The data contains daily snapshots of more
than 100.000 operational drives in a datacenter. The daily
snapshot of each drive is represented by one row that
captures basic drive metadata (i.e., serial number, device
model, capacity) as well as SMART Attributes metrics.
This dataset has 178 attributes and a total size of ∼20GB.
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Fig. 3. We compare the total storage space of Baseline against SIBACO-
BASIC using the Backblaze dataset and varying the compression algorithms.
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Fig. 4. We compare the total storage space of Baseline against SIBACO-
BASIC using the MovieLens dataset and varying the compression algorithms.

• MovieLens: This dataset is a subset of the real-word
MovieLens dataset collected by the GroupLens research
laboratory. It contains 25 million ratings and one million
tag applications applied to 62,000 movies by 162,000
users.This dataset has four attributes and and has a total
size of ∼645MB.

Since we use entropy as part of SIBACO’s compression
signatures, we computed the entropy of the attributes included
in the Backblaze and MovieLens datasets shown in Figure 2.
Observing the Backblaze plot (Figure 2 (left)), it is clear that
a lot of attributes have an entropy close to 0. This confirms
that high compression ratios can be achieved. The 0 entropy
attributes are usually optional attributes for future use, thus
they are empty or not used, but still stored.

Testbed: Our evaluation is carried out on a low-end Linux
server with 32 GB of DDR3 memory, a Intel Xeon E3-1226
v3 @ 3.30GHz processor with 4 cores and a 1TB SSD Drive.

V. EXPERIMENTAL RESULTS

We conducted three experiments to assess the effectiveness
of our SIBACO technique in reducing the storage. In this set
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Fig. 5. We compare the baseline approach to SIBACO using the MovieLens
dataset and varying the compression algorithms.

of experiments we illustrate the potential of the first imple-
mentation of SIBACO by varying the compression schemes
over two real datasets.

A. Experiment 1: SIBACO-BASIC vs Baseline using Backblaze

In this first experiment, SIBACO-BASIC splits 178 columns
of the Backblaze dataset in two groups using θ = 0.3. The first
group consists of 73 columns with entropy close to 0, which
was generated in the first stage of our technique. The second
group consists of the remaining 105 columns.

SIBACO-BASIC outperforms the Baseline technique by up
to ∼5% using LZMA for the Backblaze dataset as shown in
Figure 3. LZMA and BZIP2 yield better compression than
DEFLATED by up to ∼66% for both techniques.

This experiment indicates that the compression can affect
how our proposed technique works by selecting the most ap-
propriate compression scheme using the SIBACO knowledge
base described in Section III.

B. Experiment 2: SIBACO-BASIC vs Baseline using Movie-
Lens

In this second experiment, SIBACO-BASIC splits the four
columns of the MovieLens dataset in two groups using θ =
0.3. The first group consists of one column with the smallest
entropy. The second group consists of the remaining three
columns. Figure 4 shows that SIBACO-BASIC outperforms
Baseline for all compression schemes by up to ∼4%.

C. Experiment 3: SIBACO vs Baseline using both datasets

In this third experiment, SIBACO (with multiple com-
pression schemes) compares to the Baseline and SIBACO-
BASIC approaches (that use a single compression scheme).
SIBACO selects the best performing compression schemes for
a group based on the previous experiments. As in the previous
experiments, SIBACO splits the columns into two groups and
applies the appropriate compression scheme for each group of
the columns. Figure 5 shows that SIBACO achieves ∼4% and
∼0.5% better performance against BASELINE for MovieLens
and Backblaze, respectively.



VI. CONCLUSION

In this vision paper, we pose that significant reduction in
data storage can be achieved by using multi-scheme data
compression and propose SIBACO that breaks the data into
groups of columns and attempts to apply on individual groups
the most suitable compression scheme. We describe the first
SIBACO prototype that utilizes entropy to group columns
and select the most appropriate compression scheme based
on experimentally developed knowledge base.

In our preliminary experimental evaluation of SIBACO
prototype using three compression algorithms and two real
datasets, we observe reduction in storage space, up to ∼4%
against the competitors. These first results are very encour-
aging since the current version of SIBACO does not utilize
an extended knowledge base for compression signatures, and
considers a limited number of compression scheme.

In our next steps, we aim to fully implement and refine
all stages of our technique that can be easily plugged in
storage systems, and develop a comprehensive knowledge base
for compression signatures via analytical and experimental
methods.
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[20] D. Habich, P. Damme, A. Ungethüm, J. Pietrzyk, A. Krause, J. Hilde-
brandt, and W. Lehner, “Morphstore - in-memory query processing
based on morphing compressed intermediates LIVE,” in Proceedings of
the 2019 International Conference on Management of Data, SIGMOD,
2019, pp. 1917–1920.

[21] H. Kimura, V. R. Narasayya, and M. Syamala, “Compression aware
physical database design,” Proc. VLDB Endow., vol. 4, no. 10, pp. 657–
668, 2011.

[22] J. Zhang, G. Liu, D. Ding, and Z. Ma, “Transformer and upsampling-
based point cloud compression,” in Proceedings of the 1st International
Workshop on Advances in Point Cloud Compression, Processing and
Analysis, ser. APCCPA ’22, New York, NY, USA, 2022, p. 33–39.

[23] A. Berezkin, A. Slepnev, R. Kirichek, D. Kukunin, and D. Matveev,
“Data compression methods based on neural networks,” in ICFNDS
2021: The 5th International Conference on Future Networks & Dis-
tributed Systems, 2021, pp. 511–515.

[24] M. Abebe, H. Lazu, and K. Daudjee, “Proteus: Autonomous adaptive
storage for mixed workloads,” in SIGMOD ’22: International Confer-
ence on Management of Data, 2022, pp. 700–714.

[25] V. Raman and G. Swart, “How to wring a table dry: Entropy compression
of relations and querying of compressed relations,” in Proceedings of
the 32nd International Conference on Very Large Data Bases, 2006, pp.
858–869.
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